Machine Learning meets Quantum Physics
Quantum many body system
- Carrasquilla, J. and Melko, R.G., 2017. Machine learning phases of matter. Nature Physics, 13(5), pp.431-434.
- Ch’Ng, K., Carrasquilla, J., Melko, R.G. and Khatami, E., 2017. Machine learning phases of strongly correlated fermions. Physical Review X, 7(3), p.031038.
- Broecker, P., Carrasquilla, J., Melko, R.G. and Trebst, S., 2017. Machine learning quantum phases of matter beyond the fermion sign problem. Scientific reports, 7(1), pp.1-10.
- Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R. and Carleo, G., 2018. Neural-network quantum state tomography. Nature Physics, 14(5), pp.447-450.
- Melko, R.G., Carleo, G., Carrasquilla, J. and Cirac, J.I., 2019. Restricted Boltzmann machines in quantum physics. Nature Physics, 15(9), pp.887-892.
Reinforcement learning for quantum physics
- Lin, J., Lai, Z.Y. and Li, X., 2018. Reinforcement-learning-based architecture for automated quantum adiabatic algorithm design. arXiv, pp.arXiv-1812.
- Bukov, M., 2018. Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator. Physical Review B, 98(22), p.224305.
- Bukov, M., Day, A.G., Sels, D., Weinberg, P., Polkovnikov, A. and Mehta, P., 2018. Reinforcement learning in different phases of quantum control. Physical Review X, 8(3), p.031086.
- Fösel, T., Tighineanu, P., Weiss, T. and Marquardt, F., 2018. Reinforcement learning with neural networks for quantum feedback. Physical Review X, 8(3), p.031084.
- Niu, M.Y., Boixo, S., Smelyanskiy, V.N. and Neven, H., 2019. Universal quantum control through deep reinforcement learning. npj Quantum Information, 5(1), pp.1-8.
- Zhang, X.M., Wei, Z., Asad, R., Yang, X.C. and Wang, X., 2019. When reinforcement learning stands out in quantum control? A comparative study on state preparation. arXiv preprint arXiv:1902.02157.
- An, Z. and Zhou, D.L., 2019. Deep reinforcement learning for quantum gate control. EPL (Europhysics Letters), 126(6), p.60002.
- Alam, M.S., 2019. Quantum Logic Gate Synthesis as a Markov Decision Process. arXiv preprint arXiv:1912.12002.
- Albarrán-Arriagada, F., Retamal, J.C., Solano, E. and Lamata, L., 2020. Reinforcement learning for semi-autonomous approximate quantum eigensolver. Machine Learning: Science and Technology, 1(1), p.015002.